Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 927: 172166, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38575023

RESUMEN

Previous favorable climate conditions stimulate tree growth making some forests more vulnerable to hotter droughts. This so-called structural overshoot may contribute to forest dieback, but there is little evidence on its relative importance depending on site conditions and tree species because of limited field data. Here, we analyzed remote sensing (NDVI) and tree-ring width data to evaluate the impacts of the 2017 drought on canopy cover and growth in mixed Mediterranean forests (Fraxinus ornus, Quercus pubescens, Acer monspessulanum, Pinus pinaster) located in southern Italy. Legacy effects were assessed by calculating differences between observed and predicted basal area increment (BAI). Overall, the growth response of the study stands to the 2017 drought was contingent on site conditions and species characteristics. Most sites presented BAI and canopy cover reductions during the drought. Growth decline was followed by a quick recovery and positive legacy effects, particularly in the case of F. ornus. However, we found negative drought legacies in some species (e.g., Q. pubescens, A. monspessulanum) and sites. In those sites showing negative legacies, high growth rates prior to drought in response to previous wet winter-spring conditions may have predisposed trees to drought damage. Vice versa, the positive drought legacy found in some F. ornus site was linked to post-drought growth release due to Q. pubescens dieback and mortality. Therefore, we found evidences of structural drought overshoot, but it was restricted to specific sites and species. Our findings highlight the importance of considering site settings such as stand composition, pre-drought conditions and different tree species when studying structural overshoot. Droughts contribute to modify the composition and dynamics in mixed forests.


Asunto(s)
Sequías , Bosques , Árboles , Árboles/fisiología , Italia , Quercus/crecimiento & desarrollo , Quercus/fisiología , Cambio Climático , Pinus/fisiología , Pinus/crecimiento & desarrollo , Monitoreo del Ambiente , Fraxinus/fisiología , Fraxinus/crecimiento & desarrollo , Acer/crecimiento & desarrollo , Acer/fisiología
2.
Tree Physiol ; 44(4)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38206883

RESUMEN

Sap exudation is the process whereby trees such as sugar (Acer saccharum Marsh.) and red maple (Acer rubrum L.) generate unusually high positive stem pressure in response to repeated cycles of freeze and thaw. This elevated xylem pressure permits the sap to be harvested over a period of several weeks and hence is a major factor in the viability of the maple syrup industry. The extensive literature on sap exudation documents competing hypotheses regarding the physical and biological mechanisms that drive positive pressure generation in maple, but to date, relatively little effort has been expended on devising mathematical models for the exudation process. In this paper, we utilize an existing model of Graf et al. (J Roy Soc Interface 12:20150665, 2015) that describes heat and mass transport within the multiphase gas-liquid-ice mixture in the porous xylem tissue. The model captures the inherent multiscale nature of xylem transport by including phase change and osmotic transport in wood cells on the microscale, which is coupled to heat transport through the tree stem on the macroscale. A parametric study based on simulations with synthetic temperature data identifies the model parameters that have greatest impact on stem pressure build-up. Measured daily temperature fluctuations are then used as model inputs and the resulting simulated pressures are compared directly with experimental measurements taken from mature red and sugar maple stems during the sap harvest season. The results demonstrate that our multiscale freeze-thaw model reproduces realistic exudation behavior, thereby providing novel insights into the specific physical mechanisms that dominate positive pressure generation in maple trees.


Asunto(s)
Acer , Acer/fisiología , Congelación , Transporte Biológico , Madera , Carbohidratos
3.
Tree Physiol ; 44(1)2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38070183

RESUMEN

Stomatal density, stomatal length and carbon isotope composition can all provide insights into environmental controls on photosynthesis and transpiration. Stomatal measurements can be time-consuming; it is therefore wise to consider efficient sampling schemes. Knowing the variance partitioning at different measurement levels (i.e., among stands, plots, trees, leaves and within leaves) can aid in making informed decisions around where to focus sampling effort. In this study, we explored the effects of nitrogen (N), phosphorus (P) and calcium silicate (CaSiO3) addition on stomatal density, length and carbon isotope composition (δ13C) of sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis Britton). We observed a positive but small (8%) increase in stomatal density with P addition and an increase in δ13C with N and CaSiO3 addition in sugar maple, but we did not observe effects of nutrient addition on these characteristics in yellow birch. Variability was highest within leaves and among trees for stomatal density and highest among stomata for stomatal length. To reduce variability and increase chances of detecting treatment differences in stomatal density and length, future protocols should consider pretreatment and repeated measurements of trees over time or measure more trees per plot, increase the number of leaf impressions or standardize their locations, measure more stomata per image and ensure consistent light availability.


Asunto(s)
Acer , Betula , Betula/fisiología , Acer/fisiología , Isótopos de Carbono , Árboles/fisiología , Fertilización , Hojas de la Planta/fisiología
4.
Physiol Plant ; 175(3): e13915, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37087558

RESUMEN

Although a substantial body of evidence suggests that large and old trees have reduced metabolic levels, the search for the causes behind this observation has proved elusive. The strong coupling between age and size, commonly encountered in the field, precludes the isolation of the potential causes. We used standard propagation techniques (grafting and air-layering) to decouple the effects of size from those of age in affecting leaf structure, biochemistry and physiology of two broadleaved trees, Acer pseudoplatanus (a diffuse-porous species) and Fraxinus excelsior (a ring-porous species). The first year after establishment of the propagated plants, some of the measurements suggested the presence of age-related declines in metabolism, while other measurements either did not show any difference or suggested variability across treatments not associated with either age or size. During the second year after establishment, only one of the measured properties (specific leaf area) continued to show some evidence of an age-mediated decline (although much reduced compared to the field), whereas, for some properties (particularly for F. excelsior), even the opposite trend of age-related increases was apparent. We concluded that (1) our plants suffered from grafting shock during year 1 and they gradually recovered during year 2; (2) the results over 2 years do not support the statement that age directly mediates ageing in either species but instead suggest that size directly mediates ageing processes; and (3) neither shoots nor roots of A. pseudoplatanus showed any evidence of senescence.


Asunto(s)
Acer , Fraxinus , Fraxinus/fisiología , Acer/fisiología , Árboles/fisiología
5.
J Plant Res ; 136(1): 83-96, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36385674

RESUMEN

Norway maple and sycamore, two Acer genus species, have an important ecological value and different sensitivity to stressing factors being currently aggravated by climate change. Seedling growth is postulated to be the main barrier for successful plant establishment under the climate change scenarios. Therefore, the differences in redox regulation during the seedling performance of Norway maple and sycamore were investigated. Seeds of the two Acer species exhibited an identical high germination capacity, whereas seedling emergence was higher in sycamores. PCA analyses revealed that there is more diversification in the leaf characteristics than roots. Norway maple displayed a higher chlorophyll content index (CCI) with a similar leaf mass whereas sycamore seedlings exhibited a higher normalized difference vegetation index (NDVI), higher water content, higher root biomass and higher shoot height. Based on NDVI, sycamore seedlings appeared as very healthy plants, whereas Norway maple seedlings displayed a moderate healthy phenotype. Therefore, redox basis of seedling performance was investigated. The total pool of glutathione was four times higher in sycamore leaves than in Norway maple leaves and was reflected in highly reduced half-cell reduction potential of glutathione. Sycamore leaves contained more ascorbate because the content of its reduced form (AsA) was twice as high as in Norway maple. Therefore, the AsA/DHA ratio was balanced in sycamore leaves, reaching 1, and was halved in Norway maple leaves. Nicotinamide adenine dinucleotide phosphate content was twice as high in sycamore leaves than in Norway maples; however, its reduced form (NADPH) was predominant in Norway maple seedlings. Norway maple leaves exhibited the highest anabolic and catabolic redox charge. The higher reduction capacity and the activity of NADPH-dependent reductases in Norway maple leaves possibly resulted in higher CCI, whereas the larger root system contributed to higher NDVI in sycamore. The different methods of controlling redox parameters in Acer seedlings grown at controlled conditions provided here can be useful in understanding how tree species can cope with a changing environment in the future.


Asunto(s)
Acer , Plantones , Acer/química , Acer/fisiología , NADP/análisis , NADP/metabolismo , Oxidación-Reducción , Glutatión/metabolismo , Hojas de la Planta/metabolismo
6.
Biosensors (Basel) ; 12(12)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36551081

RESUMEN

Electroanalytical chemistry is a metrological analysis technique that provides information feedback by measuring the voltammetric signal that changes when a molecule is involved in an electrochemical reaction. There is variability in the type and content of electrochemically active substances among different plants, and the signal differences presented by such differences in electrochemical reactions can be used for plant identification and physiological monitoring. This work used electroanalytical chemistry to monitor the growth of three Acer spp. This work explores the feasibility of the electrochemical analysis technique for the physiological monitoring of highly differentiated plants within the genus and further validates the technique. Changes in the electrochemical fingerprints of A. cinnamomifolium, A. sinopurpurascens and A. palmatum 'Matsumurae' were recorded during the one-year developmental cycle. The results show that the differences in the electrochemical fingerprint profiles of Acer spp. can be used to distinguish different species and identify the growth status in each season. This work also concludes with an identification flowchart based on electrochemical fingerprinting.


Asunto(s)
Acer , Acer/fisiología , Estaciones del Año , Técnicas Electroquímicas
7.
Photosynth Res ; 154(1): 41-55, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36057003

RESUMEN

Trees regenerating in the understory respond to increased availability of light caused by gap formation by undergoing a range of morphological and physiological adjustments. These adjustments include the production of thick, sun-type leaves containing thicker mesophyll and longer palisade cells than in shade-type leaves. We asked whether in the shade-regenerating tree Acer pseudoplatanus, the increase in leaf thickness and expansion of leaf tissues are possible also in leaves that are already fully formed, a response reported so far only for a handful of species. We acclimated potted seedlings to eight levels (from 1 to 100%) of solar irradiance and, in late summer, transferred a subset of them to full sunlight. Within 30 days, the pre-shaded leaves increased leaf mass per area and became thicker mostly due to the elongation of palisade cells, except for the most shaded individuals which suffered irreversible photo-oxidative damage. This anatomical acclimation was accompanied by a transient decline in photosynthetic efficiency of PSII (Fv/FM), the magnitude of which was related to the degree of pre-shading. The Fv/FM recovered substantially within the re-acclimation period. However, leaves of transferred plants were shed earlier in the fall, indicating that the acclimation was not fully effective. These results show that A. pseudoplatanus is one of the few known species in which mature leaves may re-acclimate anatomically to increased irradiance. This may be an important mechanism enhancing utilization of gaps created during the growing season.


Asunto(s)
Acer , Aclimatación/fisiología , Acer/anatomía & histología , Acer/fisiología , Humanos , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Árboles/fisiología
8.
Sci Total Environ ; 850: 158029, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35973544

RESUMEN

Forest species composition mediates evapotranspiration and the amount of water available to human-use downstream. In the last century, the heavily forested Appalachian region has been undergoing forest mesophication which is the progressive replacement of xeric species (e.g. black oak (Quercus velutina)) by mesic species (e.g. sugar maple (Acer saccharum)). Given differences between xeric and mesic species in water use efficiency and rainfall interception losses, investigating the consequences of these species shifts on water cycles is critical to improving predictions of ecosystem responses to climate change. To meet this need, we quantified the degree to which the sap velocities of two dominant broadleaved species (sugar maple and black oak) in West Virginia, responded to ambient and experimentally altered soil moisture conditions using a throughfall exclusion experiment. We then used these data to explore how predictions of future climate under two emissions scenarios could affect forest evapotranspiration rates. Overall, we found that the maples had higher sap velocity rates than the oaks. Sap velocity in maples showed a stronger sensitivity to vapor pressure deficit (VPD), particularly at high levels of VPD, than sap velocity in oaks. Experimentally induced reductions in shallow soil moisture did not have a relevant impact on sap velocity. In response to future climate scenarios of increased vapor pressure deficits in the Central Appalachian Mountains, our results highlight the different degrees to which two important tree species will increase transpiration, and potentially reduce the water available to the heavily populated areas downstream.


Asunto(s)
Acer , Quercus , Acer/fisiología , Sequías , Ecosistema , Humanos , Quercus/fisiología , Suelo , Árboles/fisiología , Agua , West Virginia
9.
Plant Cell Environ ; 45(2): 329-346, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34902165

RESUMEN

The coordination of plant leaf water potential (ΨL ) regulation and xylem vulnerability to embolism is fundamental for understanding the tradeoffs between carbon uptake and risk of hydraulic damage. There is a general consensus that trees with vulnerable xylem more conservatively regulate ΨL than plants with resistant xylem. We evaluated if this paradigm applied to three important eastern US temperate tree species, Quercus alba L., Acer saccharum Marsh. and Liriodendron tulipifera L., by synthesizing 1600 ΨL observations, 122 xylem embolism curves and xylem anatomical measurements across 10 forests spanning pronounced hydroclimatological gradients and ages. We found that, unexpectedly, the species with the most vulnerable xylem (Q. alba) regulated ΨL less strictly than the other species. This relationship was found across all sites, such that coordination among traits was largely unaffected by climate and stand age. Quercus species are perceived to be among the most drought tolerant temperate US forest species; however, our results suggest their relatively loose ΨL regulation in response to hydrologic stress occurs with a substantial hydraulic cost that may expose them to novel risks in a more drought-prone future.


Asunto(s)
Acer/fisiología , Sequías , Liriodendron/fisiología , Quercus/fisiología , Agua/fisiología , Xilema/fisiología , Árboles/fisiología
10.
PLoS One ; 16(11): e0259045, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34758046

RESUMEN

Decomposition is an essential ecosystem service driven by interacting biotic and abiotic factors. Increasing temperatures due to climate change can affect soil moisture, soil fauna, and subsequently, decomposition. Understanding how projected climate change scenarios will affect decomposition is of vital importance for predicting nutrient cycling and ecosystem health. In this study, we experimentally addressed the question of how the early stages of decomposition would vary along a gradient of projected climate change scenarios. Given the importance of biodiversity for ecosystem service provisioning, we measured the effect of invertebrate exclusion on red maple (Acer rubrum) leaf litter breakdown along a temperature gradient using litterbags in warming chambers over a period of five weeks. Leaf litter decomposed more slowly in the warmer chambers and in the litterbag treatment that minimized invertebrate access. Moreover, increasing air temperature reduced invertebrate abundance and richness, and altered the community composition, independent of exclusion treatment. Using structural equation models, we were able to disentangle the effects of average air temperature on leaf litter loss, finding a direct negative effect of warming on the early stages of decomposition, independent of invertebrate abundance. This result indicates that not only can climate change affect the invertebrate community, but may also directly influence how the remaining organisms interact with their environment and their effectiveness at provisioning ecosystem services. Overall, our study highlights the role of biodiversity in maintaining ecosystem services and contributes to our understanding of how climate change could disrupt nutrient cycling.


Asunto(s)
Biodiversidad , Calentamiento Global , Ácaros/fisiología , Neoptera/fisiología , Temperatura , Acer/fisiología , Animales , Nutrientes , Hojas de la Planta/fisiología , Suelo/química
11.
Sci Rep ; 11(1): 20758, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34675277

RESUMEN

We assessed the link between canopy cover degree and ground vegetation taxonomic richness under alien ash-leaved maple (Acer negundo) and other (native or alien) tree species. We investigated urban and suburban forests in the large city of Yekaterinburg, Russia. Forests were evaluated on two spatial scales. Through an inter-habitat comparison we recorded canopy cover and plant taxonomic richness among 13 sample plots of 20 × 20 m where A. negundo dominated and 13 plots where other tree species dominated. In an intra-habitat comparison, we recorded canopy cover and ground vegetation taxonomic richness among 800 sample plots measuring 1 m2 in the extended urbanised forest, which featured abundant alien (308 plots) and native trees (492 plots). We observed decreased taxonomic richness among vascular ground plant species by 40% (inter-habitat) and 20% (intra-habitat) in areas dominated by A. negundo compared to areas dominated by native tree and shrub species. An abundance of A. negundo was accompanied by increased canopy cover. We found a negative relationship between canopy cover and the number of understory herbaceous species. Thus, the interception of light and the restriction of its amount for other species is a main factor supporting the negative influence of A. negundo on native plant communities.


Asunto(s)
Acer , Especies Introducidas , Árboles , Acer/fisiología , Biodiversidad , Ecosistema , Bosques , Árboles/fisiología
12.
Plant Cell Environ ; 44(4): 1243-1256, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32683699

RESUMEN

Hydraulic redistribution (HR) can buffer drought events of tree individuals, however, its relevance for neighbouring trees remains unclear. Here, we quantified HR to neighbouring trees in single- and mixed-species combinations. We hypothesized that uptake of HR water positively correlates with root length, number of root tips and root xylem hydraulic conductivity and that neighbours in single-species combinations receive more HR water than in phylogenetic distant mixed-species combinations. In a split-root experiment, a sapling with its roots split between two pots redistributed deuterium labelled water from a moist to a dry pot with an additional tree each. We quantified HR water received by the sapling in the dry pot for six temperate tree species. After 7 days, one quarter of the water in roots (2.1 ± 0.4 ml), stems (0.8 ± 0.2 ml) and transpiration (1.0 ± 0.3 ml) of the drought stressed sapling originated from HR. The amount of HR water transpired by the receiving plant stayed constant throughout the experiment. While the uptake of HR water increased with root length, species identity did not affect HR as saplings of Picea abies ((L.) Karst) and Fagus sylvatica (L.) in single- and mixed-species combinations received the same amount of HR water.


Asunto(s)
Bosques , Árboles/fisiología , Acer/crecimiento & desarrollo , Acer/fisiología , Deshidratación , Fagaceae/crecimiento & desarrollo , Fagaceae/fisiología , Hojas de la Planta/fisiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Transpiración de Plantas , Pseudotsuga/crecimiento & desarrollo , Pseudotsuga/fisiología , Quercus/crecimiento & desarrollo , Quercus/fisiología , Árboles/crecimiento & desarrollo , Agua/metabolismo , Xilema/crecimiento & desarrollo , Xilema/fisiología
13.
Int J Mol Sci ; 21(23)2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33276642

RESUMEN

The levels of methionine sulfoxide (MetO) and the abundances of methionine sulfoxide reductases (Msrs) were reported as important for the desiccation tolerance of Acer seeds. To determine whether the MetO/Msrs system is related to reactive oxygen species (ROS) and involved in the regulation of germination in orthodox and recalcitrant seeds, Norway maple and sycamore were investigated. Changes in water content, MetO content, the abundance of MsrB1 and MsrB2 in relation to ROS content and the activity of reductases depending on nicotinamide adenine dinucleotides were monitored. Acer seeds differed in germination speed-substantially higher in sycamore-hydration dynamics, levels of hydrogen peroxide, superoxide anion radicals (O2•-) and hydroxyl radicals (•OH), which exhibited peaks at different stages of germination. The MetO level dynamically changed, particularly in sycamore embryonic axes, where it was positively correlated with the levels of O2•- and the abundance of MsrB1 and negatively with the levels of •OH and the abundance of MsrB2. The MsrB2 abundance increased upon sycamore germination; in contrast, it markedly decreased in Norway maple. We propose that the ROS-MetO-Msr redox system, allowing balanced Met redox homeostasis, participates in the germination process in sycamore, which is characterized by a much higher speed compared to Norway maple.


Asunto(s)
Acer/fisiología , Germinación , Metionina Sulfóxido Reductasas/metabolismo , Metionina/análogos & derivados , Metionina/metabolismo , NADP/metabolismo , Oxidación-Reducción , Desarrollo de la Planta/genética , Especies Reactivas de Oxígeno/metabolismo , Semillas/metabolismo , Agua/metabolismo
14.
PLoS One ; 15(7): e0236313, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32706781

RESUMEN

The impacts of urbanization, such as urban heat island (UHI) and nutrient loads, can influence tree function through altered physiology and metabolism and stress response, which has implications for urban forest health in cities across the world. Our goal was to compare growth-stimulating and stress-mitigating acclimation patterns of red maple (Acer rubrum) trees in deciduous forests embedded in a small (Newark, DE, US) and a large (Philadelphia, PA, US) city. The study was conducted in a long-term urban forest network on seventy-nine mature red maple trees spanning ten forests across Newark and Philadelphia. We hypothesized that red maples in Philadelphia forests compared to Newark forests will be healthier and more acclimated to warmer temperatures, elevated CO2 concentrations and reactive nitrogen (Nr) deposition, and higher nutrient/heavy metal loads. Therefore, these red maples will have higher foliar pigments, nutrients, and stress-indicating elements, enriched δ15N isotopes and increased free polyamines and amino acids to support a growth-stimulating and stress-induced response to urbanization. Our results indicate red maples are potentially growth-stimulated and stress-acclimated in Philadelphia forests experiencing a greater magnitude of urban intensity. Red maples in Philadelphia forests contained higher concentrations of foliar chlorophyll, %N, δ15N, and nutrients than those in Newark forests. Similarly, lower foliar magnesium and manganese, and higher foliar zinc, cadmium, lead, and aluminum reflected the difference in soil biogeochemistry in Philadelphia forests. Accumulation patterns of foliar free amino acids, polyamines, phosphorous, and potassium ions in red maples in Philadelphia forests shows a reallocation in cellular metabolism and nutrient uptake pathways responsible for physiological acclimation. Our results suggest the approach used here can serve as a model for investigating 'plant physiology' and the use of urban trees as a biomonitor of the impacts of 'urban pollution' on urban forests. The results suggest that cellular oxidative stress in trees caused by pollutant uptake is mitigated by the accumulation of free amino acids, polyamines, and nutrients in a larger city. Our study provides a framework for determining whether trees respond to complex urban environments through stress memory and/or acclimation.


Asunto(s)
Aclimatación , Acer/fisiología , Parques Recreativos , Árboles/fisiología , Clorofila/metabolismo , Delaware , Bosques , Calor , Metales Pesados/análisis , Metales Pesados/metabolismo , Nitrógeno/metabolismo , Philadelphia , Hojas de la Planta/metabolismo , Suelo/química , Urbanización
15.
Plant Cell Physiol ; 61(6): 1158-1167, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32267948

RESUMEN

Desiccation tolerance is a developmental program enabling seed survival in a dry state and is common in seeds categorized as orthodox. We focused on NAD and its phosphorylated form (NADP) because their continual switching between reduced (NAD(P)H) and oxidized (NAD(P)+) forms is involved in the modulation of redox signaling and the determination of the reducing power and further antioxidant responses. Norway maple and sycamore seeds representing the orthodox and recalcitrant categories, respectively, were used as models in a comparison of responses to water loss. The process of desiccation up to 10% water content (WC) was monitored in Norway maple seeds, while dehydration up to 30% WC was monitored in desiccation-sensitive sycamore seeds. Norway maple and sycamore seeds, particularly their embryonic axes, exhibited a distinct redox status during dehydration and desiccation. High NADPH levels, NAD+ accumulation, low and stable NAD(P)H/NAD(P)+ ratios expressed as reducing power and high NADPH-dependent enzyme activity were reported in Norway maple seeds and were considered attributes of orthodox-type seeds. The contrasting results of sycamore seeds contributed to their low antioxidant capacity and high sensitivity to desiccation. NADPH deficiency, low NADPH-dependent enzyme activity and lack of NAD+ accumulation were primary features of sycamore seeds, with implications for their NAD(P)H/NAD(P)+ ratios and reducing power and with effects on many seed traits. Thus, we propose that the distinct levels of pyridine nucleotides and their redox status contribute to orthodox and recalcitrant phenotype differentiation in seeds by affecting cellular redox signaling, metabolism and the antioxidant system.


Asunto(s)
Acer/metabolismo , NADP/metabolismo , Oxidación-Reducción , Semillas/metabolismo , Acer/fisiología , Deshidratación , NADP/fisiología , Semillas/fisiología
16.
BMC Plant Biol ; 19(1): 240, 2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31170934

RESUMEN

BACKGROUND: Red maple (Acer rubrum L.) is one of the most common and widespread trees with colorful leaves. We found a mutant with red, yellow, and green leaf phenotypes in different branches, which provided ideal materials with the same genetic relationship, and little interference from the environment, for the study of complex metabolic networks that underly variations in the coloration of leaves. We applied a combination of NGS and SMRT sequencing to various red maple tissues. RESULTS: A total of 125,448 unigenes were obtained, of which 46 and 69 were thought to be related to the synthesis of anthocyanins and carotenoids, respectively. In addition, 88 unigenes were presumed to be involved in the chlorophyll metabolic pathway. Based on a comprehensive analysis of the pigment gene expression network, the mechanisms of leaf color were investigated. The massive accumulation of Cy led to its higher content and proportion than other pigments, which caused the redness of leaves. Yellow coloration was the result of the complete decomposition of chlorophyll pigments, the unmasking of carotenoid pigments, and a slight accumulation of Cy. CONCLUSIONS: This study provides a systematic analysis of color variations in the red maple. Moreover, mass sequence data obtained by deep sequencing will provide references for the controlled breeding of red maple.


Asunto(s)
Acer/fisiología , Perfilación de la Expresión Génica/instrumentación , Pigmentación/genética , Transcriptoma , Acer/genética , Acer/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología
17.
PLoS One ; 14(4): e0215511, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31022212

RESUMEN

The production of maple syrup is an important cultural and economic activity directly related to the climate of northeastern North America. As a result, there are signs that climate change could have negative impacts on maple syrup production in the next decades, particularly for regions located at the southern margins of the sugar maple (Acer saccharum Marsh.) range. The purpose of this survey study is to present the beliefs and opinions of maple syrup producers of Canada (N = 241) and the U.S. (N = 113) on climate change in general, its impacts on sugar maple health and maple syrup production, and potential adaptation measures. Using conditional inference classification trees, we examined how the socio-economic profile of respondents and the geographic location and size of respondents' sugar bushes shaped the responses of survey participants. While a majority (75%) of respondents are confident that the average temperature on Earth is increasing, less than half (46%) believe that climate change will have negative impacts on maple syrup yield in the next 30 years. Political view was a significant predictor of these results, with respondents at the right right and center-right of the political spectrum being less likely to believe in climate change and less likely to anticipate negative effects of climate change on maple syrup production. In addition, 77% of the participants indicated an interest in adopting adaptation strategies if those could increase maple syrup production. This interest was greater for respondents using vacuum tubing for sap collection than other collection methods. However, for many respondents (particularly in Canada), lack of information was identified as a constraint limiting adaptation to climate change.


Asunto(s)
Acer/fisiología , Actitud , Agricultores/psicología , Exudados de Plantas/química , Aclimatación , Adulto , Canadá , Cambio Climático , Producción de Cultivos/estadística & datos numéricos , Cultura , Agricultores/estadística & datos numéricos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Exudados de Plantas/análisis , Azúcares/análisis , Encuestas y Cuestionarios/estadística & datos numéricos , Gusto , Estados Unidos
18.
J R Soc Interface ; 16(150): 20180456, 2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30958155

RESUMEN

Autorotation of botanical samaras, with a consequent reduction in their rate of descent, increases dispersal range in the presence of horizontal winds. Samaras in initial free fall from rest pass through a brief transitional phase prior to reaching their minimum rate of descent and stable autorotation. By contrast, intense wind gusts and elastic recoil of tree branches can produce impulsive samara detachment and accelerate them rapidly through the air. Here, we investigate the autorotation of maple samaras when launched with a high initial impulse. Norway maple seeds catapulted either vertically or horizontally at approximately 9 m s-1 exhibited remarkably high and rapid decelerations (10-15 g) and reached a near-zero translational speed in less than 150 ms. The initial rotational frequency of catapulted seeds was up to four times greater than that ultimately reached during steady-state autorotation. These helicopter seeds thus transiently produce very high lift forces (at Reynolds numbers near approximately 104) that act to enhance aerial transport. These findings are relevant to the modelling of long-distance seed dispersal in unsteady flows, as well as to the design of deceleration mechanisms based on lift generation, rather than drag-based devices such as parachutes.


Asunto(s)
Acer , Modelos Biológicos , Dispersión de Semillas/fisiología , Semillas , Viento , Acer/anatomía & histología , Acer/fisiología , Semillas/anatomía & histología , Semillas/fisiología
19.
Am J Bot ; 106(3): 377-388, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30883683

RESUMEN

PREMISE OF THE STUDY: Deciduous tree species remove some nutrients from their leaves during fall leaf senescence through retranslocation. Retranslocation impacts the timeline of leaf fall, amount of active chlorophyll, and overall leaf nitrogen content as fall color change occurs. Our objective was to identify interspecific differences in the timing of abscission layer formation, leaf color change, and the level of chlorophyll degradation of young trees during fall senescence. METHODS: Leaf relative chlorophyll content for three tree species was measured during fall 2015 by a greenness meter. These measurements were calibrated for each species through spectrophotometric determination of leaf chlorophyll concentration. Abscission layer formation was tracked using light microscopy of sampled leaves. Excised leaves were photographed on a flat white surface to track species leaf color through time. KEY RESULTS: All three species had different chlorophyll declination rates throughout the fall season. The maple species started with less chlorophyll and began abscission layer formation earlier. The other two species had a similar starting chlorophyll level and onset timing of abscission layer formation. Visible leaf color change was not associated with a threshold in either chlorophyll degradation or abscission layer formation across species. CONCLUSIONS: Maple species degraded less chlorophyll on average, in the fall, than did the oak and beech species. The rate of chlorophyll degradation in coordination with abscission layer formation varied by species. Color change was not a good predictor of level of chlorophyll degradation in leaves across species.


Asunto(s)
Acer/fisiología , Fagus/fisiología , Hojas de la Planta/fisiología , Quercus/fisiología , Árboles/fisiología , Clorofila/metabolismo , Color , North Carolina , Estaciones del Año
20.
Sci Rep ; 9(1): 1167, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718740

RESUMEN

Leaf senescence provides a unique window to explore the age-dependent programmed degradation at organ label in plants. Here, spectral domain optical coherence tomography (SD-OCT) has been used to study in vivo senescing leaf microstructural changes in the deciduous plant Acer serrulatum Hayata. Hayata leaves show autumn phenology and change color from green to yellow and finally red. SD-OCT image analysis shows distinctive features among different layers of the leaves; merging of upper epidermis and palisade layers form thicker layers in red leaves compared to green leaves. Moreover, A-scan analysis showed a significant (p < 0.001) decrease in the attenuation coefficient (for wavelength range: 1100-1550 nm) from green to red leaves. In addition, the B-scan analysis also showed significant changes in 14 texture parameters extracted from second-order spatial gray level dependence matrix (SGLDM). Among these parameters, a set of three features (energy, skewness, and sum variance), capable of quantitatively distinguishing difference in the microstructures of three different colored leaves, has been identified. Furthermore, classification based on k-nearest neighbors algorithm (k-NN) was found to yield 98% sensitivity, 99% specificity, and 95.5% accuracy. Following the proposed technique, a portable noninvasive tool for quality control in crop management can be anticipated.


Asunto(s)
Acer/anatomía & histología , Acer/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Tomografía de Coherencia Óptica/métodos , Agricultura/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...